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Abstract. The temperature-dependent uniform magnetic susceptibility of interacting electrons in one di-
mension is calculated using several methods. At low temperature, the renormalization group reveals that
the Luttinger liquid spin susceptibility χ (T ) approaches zero temperature with an infinite slope in striking
contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp
scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisen-
berg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature
reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from
an effective interaction that includes the same set of diagrams as those that give the leading logarithmic
terms in the renormalization group approach. Comments on the third law of thermodynamics as well as
reasons for the failure of approaches that work in higher dimensions are given.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
71.10.Fd Lattice fermion models (Hubbard model, etc.) – 75.40.Mg Numerical simulation studies

1 Introduction

There are a number of organic conductors, including the
Bechgaard salts for example, for which the distinctive be-
havior of one-dimensional interacting electrons is observed
over a wide range of temperature [1,2]. Among the char-
acteristics observed is the asymptotic low-frequency, long-
wavelength electronic behavior which, in one dimension,
belongs to the universality class of Luttinger liquids. This
universality class plays in one-dimension the role of Lan-
dau Fermi liquid theory in higher dimension, providing
a framework to understand the occurrence of power law
behavior, spin-charge separation and various other char-
acteristics of one-dimensional systems [3].

While much is known about the predictions of Lut-
tinger liquid theory, non-singular quantities, such as the
uniform magnetic spin susceptibility χ, are not completely
understood theoretically. Experimentally, χ (T ) can be ac-
curately measured as a function of temperature using a
number of techniques, including Knight shift in Nuclear
Magnetic Resonance (NMR) experiments. In higher di-
mension, the theoretical situation for χ (T ) is clear within
Landau Fermi liquid theory. The prediction for this key
quantity is a Pauli-like susceptibility whose absolute value
is enhanced by interactions. For Luttinger liquid theory in
one dimension pioneering work was done by Dzyaloshinskii

a e-mail: cbourbon@physique.usherb.ca

and Larkin [4] and by Lee et al. [5] A few years ago,
Bourbonnais [6], using the renormalization group, read-
dressed this problem. The conclusion that emerges from
these works is that the temperature dependence of χ (T )
remains important up to T = 0, contrary to the Fermi
liquid result in high dimension where temperature de-
pendence shows up only on the scale of the Fermi en-
ergy. The renormalization group approach is expected
to give the correct asymptotic low-temperature behav-
ior of the Luttinger liquid. To obtain quantitative con-
firmation of these results from a specific microscopic
model, it is customary to study the Hubbard model
that has an exact Bethe ansatz solution in one di-
mension and belongs to the Luttinger-liquid universality
class. Despite the exact solution, the Bethe ansatz mag-
netic susceptibility must be computed numerically [7].
Additional results have been obtained recently by Jüt-
tner et al. [8] through a quantum transfer matrix
method, by Mila and Penc through world line quan-
tum Monte Carlo simulations [9], and by Moukouri [10]
through Density Matrix Renormalization Group tech-
niques. It is important to notice that the low tempera-
ture limit is difficult to reach numerically using any of the
available numerical approaches, including Bethe ansatz.

In this paper, following references [6,11], we de-
rive the renormalization group (RG) prediction for the
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temperature-dependent uniform magnetic susceptibility
of the g-ology Hamiltonian. We show that the uniform
magnetic susceptibility χ (T ) of this Luttinger liquid
approaches zero temperature with an infinite slope, in
analogy with the spin 1/2 antiferromagnetic Heisenberg
chain [12,13]. This effect comes from backscattering of
right- and left-moving electrons, which is the leading
marginally irrelevant operator. We show that this phe-
nomenon appears in a temperature range where no nu-
merical calculation has been done yet. We also obtain pre-
dictions at higher temperature by using numerical simula-
tions done on the Hubbard Hamiltonian at quarter filling.
To obtain quantitative agreement with the simulations,
we find it necessary to include non-logarithmic contribu-
tions that are beyond the RG treatment. This is done
by using an approach inspired from the Kanamori [14]-
Brueckner [15] theory valid in higher dimension [16]. The
subset of diagrams that must be resummed in one dimen-
sion is suggested by the RG and it does differ from the
subset used in higher dimension. The reasons for the fail-
ure of higher-dimensional approaches are also discussed.

The g-ology and Hubbard Hamiltonians are introduced
in Section 2. In Section 3, we present the results of nu-
merical calculations and in Section 4 the RG calculation,
including the prediction of the infinite slope as T → 0. Sec-
tion 5 discusses the comparison between numerical results,
RG prediction and the reasons for the failure of higher-
dimensional approaches. We conclude with a summary of
our main results and general comments on the range of
applicability of Luttinger-liquid theory.

2 Hubbard model and connection
with G-ology

The simulations are done for the Hubbard model

H = −t
∑
<ij>σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ (1)

where units of energy are chosen such that the hopping
matrix element t equals unity in the simulations. The cre-
ation (annihilation) operators c†iσ (ciσ) create (annihilate)
electrons of spin σ in the orbital located on site i with po-
sition ri. Only nearest-neighbor hopping is allowed. The
last term, with the usual occupation number operators
ni↑ = c†iσciσ, represents the short-range repulsion U, felt
by the electrons when they occupy the same orbital at
site i.

As is well known [17], there are logarithmic divergences
in the perturbative treatment of the Hubbard model in
one dimension. These can be handled directly by infinite
resummations of parquet diagrams [17], or most easily by a
renormalization group treatment [18–21]. In this case, the
Hubbard Hamiltonian is not a fixed-point Hamiltonian. It
is necessary to consider the renormalization group flows
in a more general space of Hamiltonians called g-ology
Hamiltonian. In the rest of this section, we recall how to
cast the Hubbard Hamiltonian as a special case of g-ology.

First, it is useful to rewrite it in the form

H = −t
∑
<ij>σ

(
c†iσcjσ + c†jσciσ

)
+
U

2

∑
iσσ′

c†iσc
†
iσ′ciσ′ciσ

(2)
which, compared with equation (1), contains an additional
term that can be absorbed in a chemical potential shift.
The g-ology Hamiltonian being defined in Fourier space,
we take

cσ (k) =
1√
L

L∑
j=1

e−ikrj cjσ ; c†σ (k) =
1√
L

L∑
j=1

eikrjc†jσ

(3)
where we have chosen unity for the lattice spacing so that
the number of sites and the system size are both equal
to L. Using these variables, and neglecting umklapp pro-
cesses, we can write,

H =
∑
k,σ

(−2t cosk) c†σ (k) cσ (k) +
U

2L

×
∑

k,k′,q,σ,σ′

c†σ (k) c†σ′ (k
′) cσ′ (k′ + q) cσ (k − q) . (4)

In recent versions of the renormalization group [13], the
full cosine dispersion relation can be taken into account,
but in the more usual version that we consider here, the
dispersion relation is linearized around the two Fermi
points ±kF, and one considers only scatterings around
and between these points. To rewrite the Hubbard Hamil-
tonian equation (4) in a way that highlights the processes
that are allowed by the Pauli principle, the sum over mo-
mentum transfers q is divided also in three pieces: q ≈ 0,
and q ≈ ±2kF. Furthermore, one introduces a lower index
p to the creation-annihilation operators that, for the mo-
ment, just indicates if the allowed particle momenta are
mostly around the +kF Fermi point (right-moving (+)),
or around the −kF Fermi point or (left-moving (−)). This
rearrangement gives, after one allows the k sums to run
from −k0 + pkF to k0 + pkF with k0 a cut-off wave vector
of the order of kF.

see equation (5) next page

where the linearized dispersion relation is

εp (k) = pvF (k − pkF) ; vF ≡ 2t sinkF. (6)

The restrictions on momentum transfer q should normally
be set to avoid double counting various scattering pro-
cesses. However, it is simpler to introduce additional states
that linearly extrapolate the right and left-moving elec-
tron dispersion relations. In otherwords, strictly speak-
ing we should have c+,σ (k) = cσ (k) for 0 ≤ k < π
and c−,σ (k) = cσ (k) for −π ≤ k < 0 while, instead,
we add states in such a way k runs from −∞ to +∞ for
both cases p = ±1. Each of these sets, p = ±1, are de-
fined as a “branch” with the corresponding dispersion rela-
tion εp (k) = pvF (k − pkF) . The added unphysical states
should not contribute appreciably because of the large en-
ergy denominators, the Pauli principle and the cut-offs
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H ≈
X
k,σ,p

εp (k) c†p,σ (k) cp,σ (k)

+
U

2L

↓X
σ,σ′=↑

X
(p,p′=±)

k0+pkFX
(k=−k0+pkF)

k0+p′kFX
(k′=−k0+p′kF)

X
q

c†p,σ (k) c†p′,σ′
�
k′
�
cp′,σ′

�
k′ + q

�
cp,σ (k − q)

+
U

2L

↓X
σ,σ′=↑

k0+kFX
(k=−k0+kF)

k0−kFX
(k′=−k0−kF)

X
q

c†+,σ (k) c†−,σ′
�
k′
�
c+,σ′

�
k′ + q + 2kF

�
c−,σ (k − q − 2kF)

+
U

2L

↓X
σ,σ′=↑

k0+kFX
(k′=−k0+kF)

k0−kFX
(k=−k0−kF)

X
q

c†−,σ (k) c†+,σ′
�
k′
�
c−,σ′

�
k′ + q − 2kF

�
c+,σ (k − q + 2kF) (5)

in the sums over k and k′ that regularize perturbation the-
ory. Hence, in the weak to intermediate coupling regime
only scatterings near the Fermi surface are important so
we can assume that the sum over q that is left for each
of the three pieces is free to run from −∞ to +∞. In the
g-ology notation, the last two terms of equation (5) are re-
grouped into 2kF scatterings with an interaction constant
g1, while the first interaction term is divided into q ≈ 0
scatterings on the same branch (g4), and q ≈ 0 scatterings
between two different branches (g2), namely

see equation (7) next page

In this notation then, the space of parameters is closed
under the renormalization-group (RG) induced flow.

The Hubbard Hamiltonian and the above g-ology
Hamiltonian clearly differ since the dispersion relation
is linearized and g-ology contains fewer scattering terms
than the original Hubbard model. If one assumes that the
high-energy processes that were dropped do not influence
the Physics, then g1 = g2 = g4 = U for the Hubbard
model. It is important to notice, however, that this iden-
tification is an approximation. In fact the g-ology Hamil-
tonian Hg is a small-cut-off limit of the Hubbard model
and is strictly related to the Hubbard model only in a RG
sense. Generally, the appropriate initial values of the cou-
pling constants entering the RG would be such that, for
example, g4 6= U . Here by rotational invariance parallel
and perpendicular components of the coupling constant
g1 are identical, a property that is preserved by the RG
transformation on the g-ology Hamiltonian.

3 Quantum Monte Carlo results

We are interested in the quarter-filled case, which cor-
responds to a large class of organic conductors. Earlier
results for the uniform magnetic susceptibility χ include
the following. First, zero temperature results that have
been obtained from the Bethe ansatz by Shiba [22] and are
shown for U/t = 2, and U/t = 4 as the left-most points in
Figure 1. Recently, Jüttner et al. [8] used a new approach
based on the Trotter-Suzuki mapping and a subsequent in-
vestigation of the quantum transfer matrix to obtain the
temperature-dependent results shown by the solid line in
Figure 1. Earlier results had been obtained using a world
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Fig. 1. Monte Carlo simulation results for the temperature
dependent susceptibility as defined by equation (8) and Tχ =
S (q = 0). Our Monte Carlo results (2 × 105 measurements)
are shown by symbols with error bars for different values of U.
For U = 4 the extrapolation of our results to ∆τ = 0 is also
shown for three temperatures. They are, within error bars, in
agreement with the quantum transfer matrix results of Jüttner
et al. [8] shown by the solid line. Points joined by the dashed
line are from reference [9] while the zero-temperature results
shown by symbols are from Shiba [22].

line algorithm by Mila and Penc [9]. The corresponding
results at U/t = 4 are linked by a dashed line in Figure 1.
These results disagree substantially from those of Jüttner
et al. [8]. As we show below, our Monte Carlo simulations
confirm the latter results. The calculations of reference [9]
are probably less accurate because they were obtained not
only from the usual extrapolations to ∆τ = 0 and L =∞,
they also required extrapolation to q = 0 of the finite
wave vector results because the world-line algorithm is for
the canonical ensemble. Finite-temperature DMRG cal-
culations [10] cannot yet reach sizes large enough to be
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Hg =
X
k,σ,p

εp (k) c†p,σ (k) cp,σ (k)

+
g1

2L

X
q

↓X
σ,σ′=↑

X
p=±

k0+pkFX
(k=−k0+pkF)

k0−pkFX
(k′=−k0−pkF)

c†p,σ (k) c†−p,σ′
�
k′
�
cp,σ′

�
k′ + q + 2pkF

�
c−p,σ (k − q − 2pkF)

+
g2

2L

X
q

↓X
σ,σ′=↑

X
p=±

k0+pkFX
(k=−k0+pkF)

k0−pkFX
(k′=−k0−pkF)

c†p,σ (k) c†−p,σ′
�
k′
�
c−p,σ′

�
k′ + q

�
cp,σ (k − q)

+
g4

2L

X
q

↓X
σ,σ′=↑

X
p=±

k0+pkFX
(k=−k0+pkF)

k0+pkFX
(k′=−k0+pkF)

c†p,σ (k) c†p,σ′
�
k′
�
cp,σ′

�
k′ + q

�
cp,σ (k − q) . (7)

compared with the results of Figure 1, although for larger
values of the interaction it would be possible.

We have used the so-called determinantal Monte Carlo
method (BSS algorithm) [23] to obtain the other finite-
temperature results in Figure 1 for U/t = 2, 3, 4. Since
equal-time quantities give better statistics, the quantity
that was computed is the magnetic structure factor for an
L site lattice

S (q) =
1

L

X
ri,rj

exp [iq (ri − rj)] 〈(ni,↑ − ni,↓) (nj,↑ − nj,↓)〉 .

(8)
This quantity at q = 0 is trivially related to

the magnetic susceptibility through the fluctuation-
dissipation theorem (S (0) = Tχ). The results shown
by isolated points with error bars in Figure 1 are
for a 30 site chain at quarter-filling. The units are cho-
sen so that t = 1. About 2 × 105 measurements were
taken for each point. For U = 4 and three tempera-
tures, namely T = 1/3, 1/6 and 1/9, we have done
the extrapolation to ∆τ = 0 using three values of ∆τ.
These results are plotted as crosses in Figure 1. Our ex-
trapolated results are in excellent agreement with those
of Jüttner et al. [8], while our unextrapolated results
systematically underestimate those of Jüttner et al. [8]
by at most a few percent at the highest temperatures.
We conclude that the discretization step that we used in
imaginary time, ∆τ = 1/8, leads to a systematic underes-
timation (of order (∆τ)2) [24] of the susceptibility which
is smaller than the statistical error on the figure except
perhaps for the two highest temperatures where the ex-
trapolated results are within two error bars of the unex-
trapolated ones.

As we shall see in the RG treatment, interactions cause
a singularity in the temperature derivative of the q = 0
susceptibility at T = 0. Observation of this singularity
would require huge system sizes. However, at higher tem-
perature, where the susceptibility is regular, finite-size ef-
fects should be negligible when the thermal de Broglie
wavelength ξth = vF/ (πT ) is smaller than the system
size. For system sizes 30 and quarter-filling, this criterion
means that finite-size effects should be small for T > 0.02.
In fact, for the lowest temperature we have considered
T ≈ 0.1, we have ξth ≈ 5. We have verified for T > 0.1
that indeed our results are the same, within statistical
accuracy, for sizes 10, 20, 30, 40.

The results shown in Figure 1 do not contain the factor
1/2 for each external spin vertex, hence they are larger by
a factor of four than those defined in the following section.

4 Renormalization group approach

The renormalization group provides a useful tool to un-
derstand the g-ology Hamiltonian and its fixed point be-
havior, the Luttinger liquid. In the first subsection, we
summarize well known results for the renormalization
group flow of the parameters [18–21]. In the second sub-
section, we show how to apply perturbative techniques to
the small cut-off theory to compute the uniform magnetic
spin susceptibility.

4.1 Renormalization group

Following the Kadanoff-Wilson renormalization group
procedure of reference [21] we derive the one-dimensional
scaling results that are essential for the calculation of the
magnetic susceptibility. One starts with the partition func-
tion of the one-dimensional electron gas expressed in terms
of a functional integral over anticommuting fields, namely

Z =
∫ ∫

Dψ∗Dψ eS[ψ∗,ψ]. (9)

The Euclidean action S = S0 + SI corresponding to the
g-ology Hamiltonian (7), consists in a sum of free and
interacting parts. Using the definition

ψp,σ(k, ikn) =

√
T

L

L∑
j=1

∫ β

0

dτe−ikrj+iknτψp,σ(rj , τ) (10)

with the fermionic Matsubara frequencies kn =
(2n+ 1)πT , n = 0,±1,±2, ... and the notations k̃ =
[k, kn = (2n + 1)πT ] and q̃ = (q, iqm = 2mπT ) the two
parts of the action are given by

S0[ψ∗, ψ] =
∑
p,ek,σ

G0−1
p (k̃)ψ∗p,σ(k̃)ψp,σ(k̃) (11)
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and

SI [ψ∗, ψ] =
T

2L

∑
{ p,fk1,ek2,eq,σ}

(g1δσ1σ3δσ2σ4 − g2δσ1σ4δσ2σ3)

×ψ∗p,σ1

(
k̃1

)
ψ∗−p,σ2

(k̃2)ψ−p,σ3(k̃2 + q̃)ψp,σ4(k̃1 − q̃)

− T

2L

∑
{ p,fk1,ek2,eq,σ,σ′}

g4 ψ
∗
p,σ(k̃1)ψ∗p,σ′(k̃2)

×ψp,σ′(k̃2 + q̃)ψp,σ(k̃1 − q̃). (12)

To rewrite this equation, the g1 term in equation (7) has
been subjected to the change of variable, q → k − k′ −
2pkF−q. In the usual g-ology terminology described above,
the constants g1 and g2 stand for the backward and for-
ward coupling constants between right and left moving
carriers whereas g4 is the forward scattering amplitude
for electrons on the same branch. The sums over wave
vectors in SI [ψ∗, ψ] are restricted by the bandwidth cut-
off E0 = 2vFk0. The measure is given by

Dψ∗Dψ =
∏
p,σ,ek

dψ∗p,σ(k̃)dψp,σ(k̃) (13)

while the one-dimensional free propagator of the fermion
field has the form

G0
p(k̃) = −

〈
ψp,σ

(
k̃
)
ψ∗p,σ

(
k̃
)〉

0
=

1
ikn − εp (k)

(14)

with εp(k) as in equation (6).
In the bandwidth cut-off scheme, the renormaliza-

tion group procedure in one dimension consists in suc-
cessive partial integrations of fermion degrees freedom in
the outer band-momentum shell corresponding to energies
1
2E0(l) ≥ εp(k) > 1

2E0(l+dl) for electrons and − 1
2E0(l) ≤

εp(k) < − 1
2E0(l+ dl) for holes, with E0(l) = E0e−l an ef-

fective bandwidth cut-off at step l ≥ 0 (E0 ≡ 2EF). For
each partial summation, a complete Matsubara frequency
sum is performed. Making use of the linked cluster theo-
rem, the partial trace can be formally written as

Z ∝
∫∫

<

Dψ∗DψeS[ψ∗,ψ]`

×
∫∫

Dψ
∗
DψeS0[ψ∗,ψ]+SI[ψ∗,ψ,ψ∗,ψ]

∝ Z0

∫∫
<

Dψ∗DψeS[ψ∗,ψ]`

× exp

( ∞∑
n=1

1
n!

〈(
SI
[
ψ
∗
, ψ, ψ∗, ψ

])n〉
0,c

)
(15)

∝
∫ ∫

<

Dψ∗DψeS[ψ∗,ψ]`+d` . (16)

Here the ψ
′
s refer to fermion fields with a band wave vec-

tor in the outer momentum shell while the ψ′s pertain to

g g
g

g

1(l +dl) (l)
1

(l)
1

(l)1
= +

g
2

(l +dl) = g
2

(l) + g (l)
1

g (l)
1

Fig. 2. Non-cancelling diagrams for the renormalization group
calculation of the recursion relations for g1 and g2. Wiggly lines
are for interactions, dashed (solid) lines are for fermions on the
left −kF (right kF) branch of the spectrum. The bar on a line
indicates that the corresponding integration is in the small
momentum shell being integrated.

lower momentum degrees of freedom that are kept fixed.
The outer shell averages (connected diagrams) are defined
with respect to the free part S0[ψ

∗
, ψ]. The Hartree-Fock

diagrams redefine the chemical potential in such a way
that Luttinger’s Fermi surface [25] is preserved. At the
one-loop level, the renormalization of g1 and g2 is ob-
tained from the evaluation of the n = 2 outer-shell av-
erages where

SI [ψ
∗
, ψ, ψ∗, ψ] ∼ ψ

∗
pψ
∗
−pψ−pψp + ψ

∗
pψ−pψ

∗
−pψp + ...

(17)
corresponding to outer-shell decompositions in the
Cooper, and Peierls channels. An essential characteristic
of the one-dimensional electron gas that emerges at the
one-loop level is the quantum interference between both
channels. Thus when the logarithmic diagrams are evalu-
ated at zero external Peierls and Cooper variables, several
diagrams cancel and only a 2kF electron-hole bubble re-
mains for the renormalization of g1 whereas g2 is affected
by a Cooper ladder graph. The remaining diagrams ap-
pear in Figure 2. After the outer shell integration, one
obtains the one-loop scaling equations

dg̃1

dl
= −g̃2

1

d(2g̃2 − g̃1)
dl

= 0 (18)

where g̃1,2 ≡ g1,2/ (πvF). The combination of coupling
constants 2g̃2 − g̃1 is a renormalization group invariant
which is related to the conservation of the particles on each
branch for g1 and g2 scattering processes, when umklapp
processes are neglected.

Another property of interest is that the decoupling of
the above two scaling equations can be understood as a
consequence of the separation between spin and charge
long-wavelength degrees of freedom. This is clearly man-
ifest when the Hamiltonian representation HI(l) of the
effective interacting part of the action at step l is written
in the Landau channel in a rotationaly invariant form

HI [g1(l), g2(l)] =
∑
p,q

(2g2 − g1)ρp(q)ρ−p(−q)− g1(l)

×
∑
p,q

Sp(q) · S−p(−q). (19)



356 The European Physical Journal B

Here the operators for the long-wavelength charge (ρp)
and spin (Sp) degrees degrees of freedom of branch p are
respectively given, in operator form, by

ρ±p(±q) =
1

2
√
L

∑
k,σ

∗
c†±p,σ(k)c±p,σ(k ± q)

S±p(±q) =
1

2
√
L

∑
k,αβ

∗
c†±p,α(k)σα,βc±p,β(k ± q), (20)

with the vector σ whose components are the usual Pauli
matrices. Because of the integrated degrees of freedom,
the summations on band wave vectors k are restricted to
the interval | εp(k) |≤ E0(l)/2. This way of writing the
effective Hamiltonian together with the scaling equations
(4.1) emphasizes that interfering and logarithmically sin-
gular correlations of the Peierls and Cooper channels do
influence uniform correlations of the Landau channel. This
must be taken into account in the calculation of the uni-
form magnetic susceptibility as we show shortly.

Before concluding this subsection, we mention how
g4 appears in the partial trace operation equation (15).
One can show that the coupling of g1 and g2 to g4 at
higher order also leads to logarithmic corrections to the
vertex part which are equivalent to a renormalization of
the Fermi velocity in the scaling equations (4.1). One then
has g̃1 = g1/(πvσ) and 2g̃2− g̃1 = (2g2− g1)/(πvρ), where

vρ,σ = vF[1± g4(2πvF)−1]. (21)

Here vσ and vρ are respectively the velocity of spin and
charge excitations. Thus for g1 for example, one can write

g1(l) =
g1

1 + g1(πvσ)−1l
, (22)

while the charge coupling 2g̃2−g̃1 remains an invariant. As
for the interaction term g4 itself, it does not renormalize
at this order [18].

4.2 Spin and charge susceptibilities from auxiliary fields

The renormalization described above is valid as long as
the cut-off energy E0(l)/2 is larger than the tempera-
ture. For smaller cut-off, the contributions from loop in-
tegrations are not logarithmic because of the Fermi oc-
cupation factors. While one could in principle modify the
recursion relations to account for this and continue their
integration [26], it is simpler to apply a sharp cut-off pro-
cedure. We simply use the effective action obtained for
l ≈ ln(EF/T ) and apply perturbation theory to obtain
the uniform susceptibility. We go through the exercise of
formally generating the perturbative result through the
auxiliary field (Hubbard-Stratonovich) method. This will
allow us to exhibit the accuracy of standard perturbative
techniques for a linearized spectrum in the Landau chan-
nel [6,11] and to find the infinite slope of the susceptibility
in the zero temperature limit. But first, we must analyze
the part of the Hamiltonian that we will take as the un-
perturbed one.

4.2.1 The g4 theory

Rescaling wave vectors to recover the original units, all
band momenta |k| are now smaller than k0 ≈ T/vF and,
correspondingly, transfer momenta |q| have to be of the
same order. Hence we are now working with a small cut-
off theory involving only low-frequency, low-momentum
interactions within a single branch. It will be useful then,
later, to work in an interaction representation where in
the zeroth-order Hamiltonian H4

p the two branches ±kF

do not interact with each other.

H4
p =

∑
k,σ

εp (k) c†p,σ (k) cp,σ (k) +
g4

2L

×
k0+pkF∑

k,k′=−k0+pkF

∑
q

↓∑
σ,σ′=↑

c†p,σ (k) c†p,σ′ (k
′)

× cp,σ′ (k′ + q) cp,σ (k − q) . (23)

We will need to know the value of averages such as〈
Spα (q̃)Sp′α (q̃′)

〉
4

computed with the above Hamilto-
nian. The label α refers to spatial direction, x, y, z, of
the spin operator. Because the Hamiltonians H4

p are small
cut-off Hamiltonians, the exact irreducible vertex in the
particle-hole channel can be taken as g4 without further
Landau-theory-like renormalization from high-energy pro-
cesses. A number of cancellations occur for this model [27],
so that the final expression has an RPA like form,

〈Spα (q̃)Sp′α (q̃′)〉4 ≡ δp,p′δeq,−eq′
1
4

χ0
p (q̃)

1− 1
2g4χ0

p (q̃)
· (24)

In this expression, the non-interacting susceptibility χ0
p (q̃)

on one branch branch p = ± is given by

χ0
p (q̃) = −2

∑
k

f [εp (k)]− f [εp (k + q)]
iqn + εp (k)− εp (k + q)

, (25)

where f (εp (k)) is the Fermi function. At iqn = 0, this is
one half of the total bare susceptibility since the sum over
wave vectors is peaked near only one of the two Fermi
points. At small wave vector and zero temperature,

χ0
p(q, iqn) = N(EF)

pvFq

pvFq − iqn
, (26)

with N(EF) = (πvF)−1 the bare density of states per
branch (half of the total bare density of states). Similarly,
the charge-charge correlation function is given by [27]

〈ρp (q̃) ρp′ (q̃′)〉4 ≡ δp,p′δeq,−eq′
1
4

χ0
p (q̃)

1 + 1
2g4χ0

p (q̃)
· (27)

Note that in the iqn = 0, q → 0 limit we have at low
temperature,

lim
q→0
〈Spα (q, 0)Spα (−q, 0)〉4 =

1
4

(πvF)−1

1− g4/ (2πvF)

≡ 1
4

1
πvσ

(28)
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lim
q→0
〈ρp (q, 0) ρp (−q, 0)〉4 =

1
4

(πvF)−1

1 + g4/ (2πvF)

≡ 1
4

1
πvρ

, (29)

where the spin and charge velocities are defined as above
in equation (21).

4.2.2 Auxiliary-field representation

The magnetic susceptibility is obtained from a derivative
with respect to an external magnetic field h. We choose
units where the g factor times the Bohr magneton equals
unity. In the presence of h, the partition function takes
the form,

Z[h] = Tr

�
e−β(H4

++H4
−) Tτ exp

�
−
Z β

0

�
HI [g1(l), g2(l), τ ]

−
�X
p=±

Sp(q, τ )
�
· h(−q, τ )

�
dτ

��
, (30)

where we use the interaction representation in which the
Hamiltonian H4

p studied in the previous section plays the
role of the unperturbed Hamiltonian. Using Gaussian inte-
gration (Hubbard-Stratonovich decomposition), to decou-
ple the interactions between branches, this may be rewrit-
ten as

Z = Z4

∫ ∫
DφDM

× exp

(
−
∑
q

∑
p

∫ β

0

dτ [φp(q, τ)φ−p(−q, τ)

+ Mp(q, τ) ·M−p(−q, τ)]

)

×
〈
Tτ exp

(
−
∫ β

0

dτH [φ,M,h, τ ]

)〉
4

, (31)

where φ and M are real auxiliary fields for charge and
spin degrees of freedom respectively and

H[φ,M,h, τ ] =
∑
p,q

[
2i
√

2g2 − g1 ρp(q, τ)φp(−q, τ)

+ 2
√
g1(l) Sp(q, τ) ·Mp(−q, τ)− Sp(q, τ) · h(−q, τ)

]
(32)

while Z4 ≡ Tr
[
e−β(H4

++H4
−)
]

and 〈...〉4 are respectively
the partition function and corresponding averages calcu-
lated in the presence of the g4 interaction only. As in previ-
ous sections, we use the following definition for quantities
in Matsubara frequencies ωm = 2πmT, m = 0,±1,±2, ...

h (τ) =
√
T
∑
ωm

e−iωmτh (ωm) (33)

h (ωm) =
√
T

∫ β

0

dτeiωmτh (τ) . (34)

With these definitions, and the change of variable
Mp (q̃) → Mp (q̃) + h (q̃) /

(
2
√
g1

)
, q̃ = (q, ωm = 2πmT )

the zero-field dynamic magnetic susceptibility per unit
length can be formally expressed in terms of an average
over the magnetic auxiliary field M, that is

χα(q̃) =

〈∑
p,p′

Spα (q̃)Sp,α (−q̃)
〉

=
δ2 lnZ[h]

δhα(−q̃)δhα(q̃)

∣∣∣∣
h=0

=
1

g1(l)
[〈
∑
p

Mp,α(q̃)
∑
p′

Mp′,α(−q̃)〉 − 1] (35)

where the subscript α stands for the orientation of the
magnetic field.

Applying the linked-cluster theorem in equation (31)
and evaluating the averages 〈. . .〉4 using equations (28, 29)
of the previous subsection allows one to write, in the ro-
tationally invariant case,

Z = Z4

∫ ∫
DφDMexp

−∑
eq,p,p′

[φp(q̃)Ap,p′(q̃)φp′(−q̃)

+ Mp(q̃)Bp,p′(q̃)Mp′(−q̃)] +O
(
M4, φ4,M2φ2

)}
(36)

with the matrix elements

Ap,p(q̃) =
1
2

(2g2 − g1)
χ0
p (q̃)

1 + 1
2g4χ0

p (q̃)
≡ 1

2
(2g2 − g1)χ0

c,p (q̃)

(37)
A+,− = A−,+ = 1 (38)

and

Bp,p(q̃) = −1
2
g1 (l)

χ0
p (q̃)

1− 1
2g4χ0

p (q̃)
≡ −1

2
g1 (l)χ0

σ,p (q̃)

(39)
B+,− = B−,+ = 1 (40)

respectively for the charge and spin degrees of freedom of
the Landau channel.

In these expressions, g1 (l) is given by equation (22)
with l ≈ ln(Λ/T ) where Λ is a cut-off of the order of the
Fermi energy. Hence,

g1 (T ) =
g1

1 + g1
πvσ

ln Λ
T

· (41)

The neglect of mode-mode coupling or anharmonic terms
in equation (36) is quite justified in one-dimension. In-
deed we are in a low cut-off theory so that only the q̃ = 0
components of the Hubbard-Stratonovich fields are impor-
tant. When the unperturbed Hamiltonian is quadratic in
fermion fields, the coefficients of the q̃ = 0 mode-mode
coupling terms vanish because they are derivatives of the
density of states [28], a quantity that is a constant for a
linear dispersion relation. For the same reason, the spatial
rigidity of correlations of the auxiliary fields φ and M van-
ishes. Here the unperturbed part of the Hamiltonian is the
interacting g4 theory. It is known that in the theory with a
linearized dispersion relation, the density fluctuations are
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Gaussian, hence there is no mode-coupling term [27]. Fur-
thermore, there is no singularity in this theory [29]. Here
we will take into account the fact that the dispersion re-
lation is not linear. This could make mode-mode coupling
terms become different from zero at high temperature, far
from the Luttinger liquid fixed point [13].

4.2.3 Susceptibilities

The Gaussian fluctuations of M evaluated with the func-
tional equation (36) give us the magnetic susceptibility
through equation (35). We find in the rotationaly invari-
ant case

χ(l) =
1

g1(l)

1
2

∑
p,p′

(
B−1

)
p,p′
− 1

 . (42)

Using the expression equation (39) for Bp,p, one obtains,

χ (eq) =− 1

4

"
g1 (l)χ0

σ,+ (eq)χ0
σ,− (eq) +

�
χ0
σ,+ (eq) +χ0

σ,− (eq)�
1
4
g2

1 (l)χ0
σ,+ (eq)χ0

σ,− (eq)− 1

#
.

(43)

In the Luttinger-liquid limit, (linear dispersion relation)
one finds for the retarded spin susceptibility,

χR = −1
4

2
πvs

(vsq)2

(ω + iη)2 − (vsṽs) q2
(44)

vs = vσ +
g1(l)
2π

= vF −
g4

2π
+
g1(l)
2π

(45)

ṽs = vσ −
g1(l)
2π

= vF −
g4

2π
− g1(l)

2π
(46)

which reduces to the known result [18,27] in the limit
g1 = 0.

For the static susceptibility of interest to us, the result
is simpler. In that case, we take ω → 0 first and notice
that

χ0
σ,+ (q = 0, ω = 0) = χ0

σ,− (q = 0, ω = 0) ≡ χ0
p (T ) , (47)

where g1 (l) is evaluated at lT = ln(EF/T ). This leads to

χ(T ) =
1
2

(
χ0
p(T )

1− 1
2 g4χ

0
p(T )

)
1− 1

2g1(T )
(

χ0
p(T )

1− 1
2g4χ

0
p(T )

) · (48)

To leading order in g1(T ), one finds

χ(T ) ≈ 1
2
χ0
σ(T )[1 +

1
2
g1(T )χ0

σ(T ) + ...]

with

χ0
σ(T ) ≡

χ0
p (T )

1− (2πvF)−1 g4

· (49)

In the absence of g4, this expression, coincides with the re-
sult obtained previously by Dzyaloshinskii and Larkin [4]

and by Lee et al. [5]. Our more general expression for the
susceptibility equation (48) may be rewritten as

χ(T ) =
1
2χ

0
p(T )

1− 1
2 (g4 + g1(T ))χ0

p(T )
· (50)

For the repulsive sector g1 > 0, g1(T → 0) → 0 is irrele-
vant in the zero temperature limit and there one recovers
the Luttinger-liquid result [30],

χ (T = 0) =

〈∑
p,p′

Spα (0, 0)Sp,α (0, 0)

〉

=
1

2πvF[1− (2πvF)−1g4]
=

1
2πvσ

· (51)

The analogous calculations for the charge fluctuations also
lead to similar results. It suffices to do the following sub-
stitutions in any of the above spin susceptibility results:

g4 → −g4 (52)

g1 → g1 − 2g2. (53)

In particular, in the static limit, the charge susceptibil-
ity χc (T ) (or equivalently the isothermal compressibility
κT (T ) = χc (T ) /n2) is given by

χc (T ) =

〈∑
p,p′

ρp (0, 0)ρp (0, 0)

〉

=
1
2χ

0
p

1 + 1
2 (g4 + 2g2 − g1)χ0

p(T )
· (54)

Again in the repulsive sector g1 > 0, 2g2 − g1 is a renor-
malization group invariant when umklapp scattering can
be neglected (cf. Eq. (18)) and one recovers the Luttinger-
liquid result in the zero-temperature limit [30],

χc (T = 0) =
1

2πvF[1 + (2πvF)−1 (g4 + 2g2 − g1)]
· (55)

4.2.4 Infinite slope in the zero temperature limit and third
law of thermodynamics

While in the absence of umklapp scattering the charge
susceptibility comes in the zero-temperature limit with
zero slope, as in a Fermi liquid, the dependence of the
magnetic susceptibility equation (50) on the marginally
irrelevant variable g1 (T ) implies an infinite slope in the
zero temperature limit. This can be seen as follows. Since
∂χ0

p/∂T has a finite limit as T → 0, the singular contri-
butions comes from

∂χ(T )
∂T

→ χ2(T )
∂g1(T )
∂T

·

The temperature derivative of the marginally irrelevant
variable equals infinity at T = 0 as can easily be obtained
from the temperature derivative of equation (41)

∂g1(T )
∂T

=
g1(

1 + g1
πvσ

ln Λ
T

)2

g1

πvσ

1
T
· (56)
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Hence,

lim
T→o

∂χ(T )
∂T

=∞. (57)

A superficial look at the zero temperature infinite slope
equation (57) suggests a violation of the third law of
thermodynamics. Indeed, consider the grand potential
Ω = E − TS − µN, whose differential change is given by
dΩ = −SdT −Ndµ−M·dB. Normalizing to unit volume
on finds,

∂

∂T
χ

∣∣∣∣
T=0

=
∂

∂T

∂M

∂B

∣∣∣∣
T=0

= − ∂

∂T

∂2Ω

∂B2

∣∣∣∣
T=0

(58)

= − ∂2

∂B2

∂

∂T
Ω

∣∣∣∣
T=0

=
∂2S

∂B2

∣∣∣∣
T=0

=∞.(59)

The infinite second derivatives of the entropy seem to con-
tradict the third law of thermodynamics that says that the
entropy at zero temperature is independent of external pa-
rameters. However, because the point T = 0, B = 0 is a
critical point (infinite correlation length), the free energy
at this point is not analytic and we are not allowed to
invert the order of differentiation as we did on the sec-
ond line. Hence, one cannot conclude that ∂

∂T χ
∣∣
T=0

=∞
violates the third law [31]. The entropy of the Luttinger
liquid does vanish at zero temperature, independently of
B and µ [30].

5 Comparisons with Monte Carlo simulations

In this section, we shall compare the RG results first with
the zero-temperature exact results and then with all the
finite-temperature results exhibited in Figure 1. It is not
yet possible to do simulations at low enough temperature
to confirm or not the existence of the infinite slope seen
in the RG approach in the T → 0 limit since this also
requires huge system sizes. It should however be possible
to verify that regular extrapolation of finite T results to
the T = 0 limit is not possible. At higher temperature
and larger interaction strengths, non-logarithmic terms
become important. We will show that it is possible to
estimate these. In two dimensions, it has been possible
to explain the complete temperature-dependent magnetic
properties of the Hubbard model by using diagrammatic
approaches [16,33] far from half-filling or the Two-Particle
Self-Consistent approach [34,35] at arbitrary fillings. We
briefly explore the predictions of these approaches in one-
dimension. The reason for their failure in one dimension
will help understand the correct way to proceed.

5.1 Comparisons with the renormalization group
approach

To compare numerical Monte Carlo results with our RG
results for the susceptibility equation (48) or equivalently
equation (50), (remember the trivial factor of four to com-
pare with simulations) one needs to know the initial val-
ues of g1 and g4 entering the scaling equations. As argued
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Fig. 3. Magnetic susceptibility χ evaluated from equa-
tions (48) or equivalently (50) with the naive replacements g4 =

g1 = U and, using equation (41), g1 (T ) = g1/
�

1 + g1
πvσ

ln Λ
T

�
with Λ = 2. The spin velocity is obtained from equation (21),
vρ,σ = vF[1±g4(2πvF)−1]. The inset shows the low temperature
region. In the inset, the X symbols show the low-temperature
limit predicted by the RG.

above, it is not strictly correct for the Hubbard model to
assume that these constants can be taken as g1 = g4 = U
because the dispersion relation is not linear, and the cut-
off in the initial model is not as in the g-ology model. Let
us start by a comparison with the zero temperature ex-
act results of Shiba. We find that our result equation (51)
differs from that of Shiba by at most 15% up to U = 4 if
we choose g4 = U. At U = 2, the RG result is accurate to
about 1%. The same conclusions were reached a long time
ago in reference [32]. Hence, we conclude that at small
coupling the estimate g1 = g4 = U should be accurate.

To do a more general comparison at finite tempera-
ture, our results equations (41, 50) require in addition a
value for the cut-off Λ. Taking Λ = 2, which corresponds
roughly to half the bandwidth, of the order of the Fermi
energy, produces the results in Figure 3. At low temper-
ature, the results are not too sensitive to the value of
Λ which enters only logarithmically. The comparison in
Figure 3 shows that the disagreement with Monte Carlo
results does become larger as U increases. Higher or-
der logarithmic terms will not change the picture since
they are smaller. As shown in the following subsections,
the main source of discrepancy resides in non-logarithmic
contributions that are actually not negligible at high tem-
perature where the non-divergent (non-logarithmic) con-
tributions dominate the magnetic susceptibility.

Let us discuss in turn the various features appear-
ing in Figure 3. The Monte Carlo data shows that the
temperature at which the maximum susceptibility occurs
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is essentially independent of the interactions. The interac-
tions determine only the overall enhancement and sharp-
ness of the maximum but not the position. The position
of the maximum Tmax within RG also does not depend
strongly on interactions but there can be a 10% shift in
Tmax when one changes the cut-off from Λ = 1 to Λ = 2.
However, since the RG results do not seem very reliable
near the maximum, we postpone this discussion to Section
5.5.

Decreasing the temperature from the position of the
maximum, the RG predicts a first inflection point located
at Ti = 0.099±0.002. This temperature is just at the limit
of our Monte Carlo data. The inflection point can also not
be seen in the more recent data of reference [8] since only
the points T = 0.1 and T = 0.05 are available in the
low-temperature region (see Fig. 1). This inflection point
is again an effect that is caused by the band structure
and within the above accuracy the position is indepen-
dent of interactions. Indeed, while the curvature of the
non-interacting susceptibility ∂2χ0/∂T

2 is negative at the
maximum, it must be positive at low temperature because
of the characteristics of the one-dimensional band with a
parabolic bottom. The position of this inflection point is
the same, within the quoted accuracy, whether one uses
Λ = 1 or Λ = 2 or a temperature independent interaction
as in Section 5.5. With a parabolic band instead of a cosine
band, one finds an inflection point at Ti = 0.101± 0.002,
again essentially independent of cut-off or interactions.

Since the zero temperature value of the susceptibility
is reached from finite temperature with an infinite slope,
as discussed in the previous section, there is a second low-
temperature inflection point. For Λ = 2, it appears at
TL = 0.0329, 0.0328, 0.0312 for, respectively, U = 2, 3, 4.
This temperature is roughly three times lower than our
lowest temperature in the Monte Carlo simulations and
also lower than the other lowest available numerical results
exhibited in Figure 1. The infinite slope in the suscepti-
bility predicted by the RG appears confined to a small
temperature range even when seen on a magnified scale,
as one can check in the inset of Figure 3.

Contrary to the previous Tmax and Ti, identified above,
the location of the low-temperature inflection point TL is
not purely a band structure effect. It is clearly absent from
χ0 (T ) . The low-temperature inflection point appears in
the RG calculation because of the competition between
the band-structure effects that lead to ∂2χ0/∂T

2 > 0
and the logarithmic singularity in g1 (T ) that leads to
negative curvature in the full susceptibility at low tem-
perature. As long as the interaction is sufficiently strong,
this low-temperature inflection point occurs at a temper-
ature that is remarkably independent of interactions. For
lower values of the interaction, U = 0.5 and U = 1,
one finds that the inflection point is at TL = 0.0208
and TL = 0.0288. Comparing with the above results,
one sees that for 1 < U < 4, the low-temperature in-
flection point is independent of interaction within about
10% (TL = 0.031 ± 0.002) while for 0.5 < U < 4 the
position varies from 0.02 to 0.03. The weak dependence
on interaction comes from several factors: a) The interac-

tions influence the susceptibility weakly, mainly to first
order in the expansion of the RPA-like denominators.
b) The inflection point occurs in a regime where g1 (T )
takes its asymptotic form, πvσ/ ln (Λ/T ) which depends
on the interactions only weakly through vσ. c) Only the
order T 2 of the Sommerfeld expansion of χ0 suffices to ob-
tain an accurate result. These three simplifications allow
one to obtain an accurate analytical expression for the lo-
cation of the inflection point. However, since terms up to
order T 2 ln3 (Λ/T ) must be kept, the resulting equation is
transcendental and must be solved numerically.

The location of the low-temperature inflection point
TL clearly depends on the value of the cut-off Λ. However,
since the dependence is logarithmic, the above results are
not so sensitive to the precise value of the cut-off. For
example, for Λ = 1 one finds TL = 0.0219, 0.0304, 0.0349,
0.0345, 0.0324 for, respectively, U = 0.5, 1, 2, 3, 4. These
values of TL are larger than the corresponding values for
Λ = 2 by at most 6%. For a parabolic band and Λ = 2,
one finds TL = 0.035, 0.035, 0.034 for U = 2, 3, 4 values
that are at most 8% larger than the corresponding results
for the cosine band with the same Λ = 2.

5.2 Diagrammatic Kanamori approach

From now on, we concentrate on the susceptibility at
temperatures above the low-temperature inflection point,
where the RG singularities do not contribute apprecia-
bly to the susceptibility. It was suggested long ago by
Kanamori that the interaction appearing in RPA expres-
sions should be renormalized. Following this idea, it was
shown [16] that in two dimensions the renormalized Urn

can be accurately computed as follows:

Urn =
〈

U

1 + Uχpp (Q,iqn = 0)

〉
. (60)

In this expression, the quantity χpp (Q,iqn = 0) is the
Cooper bubble for a total incident momentum Q. The
average is over the values of Q. Several different types
of averages can be done, namely over the whole Brillouin
zone [16], or over wave vectors corresponding to values of
Q = k + k′ such that both k and k′ are within an energy
equal to the temperature T of the Fermi surface [36]. The
latter type of approximation is closer in spirit to Fermi-
liquid theory [37] and gives overall better results.

When the one-dimensional version of the procedure of
reference [16] is applied to the present one-dimensional
case, the agreement with the Monte Carlo results is ap-
parently much better at high temperature than with the
scaling approach. The temperature dependence is essen-
tially correct and there is simply an underestimation of the
overall magnitude of the susceptibility by 3%, 4%, and 9%
for, respectively, U = 2 , 3, and 4. The value of Urn that
we find may be approximated by

Urn ≈
U

1 + Uλ
(61)

with λ ≈ 〈χpp (Q,iqn = 0)〉 ≈ 0.29.
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In two dimensions, the agreement with Monte Carlo
simulations is much better than found here and it is valid
for all wave vectors, as long as the filling is such that there
is no zero-temperature phase transition. In one dimension,
the bare susceptibility at q = 2kF diverges logarithmically
with temperature at any filling because of nesting. This
means that at sufficiently low temperature, RPA with a
temperature and wave vector independent Urn predicts a
finite temperature phase transition at any filling. This is
prohibited by the Mermin-Wagner theorem. Sure enough,
for the values of U studied here, this transition occurs at
a temperature much lower than those investigated above
with Monte Carlo, but nevertheless, this is a question of
principle that cannot be overlooked.

5.3 Two-particle self-consistent approach (TPSC)

The TPSC approach [34,35] avoids any finite-temperature
phase transition in both one and two-dimensions. Hence,
we may check wether this gives a better agreement with
Monte Carlo simulations than the previous approach. The
one-dimensional version of the theory can be summarized
as follows. One approximates spin and charge suscepti-
bilities χsp, χch by RPA-like forms but with two dif-
ferent effective interactions Usp and Uch which are then
determined self-consistently using sum rules. Although the
susceptibilities have an RPA functional form, the physi-
cal properties of the theory are very different from RPA
because of the self-consistency conditions on Usp and Uch.
The necessity to have two different effective interactions
for spin and for charge is dictated by the Pauli exclusion
principle 〈n2

σ〉 = 〈nσ〉 which implies that both χsp and
χch are related to only one local pair correlation func-
tion 〈n↑n↓〉. Indeed, using the fluctuation-dissipation the-
orem in Matsubara formalism and the Pauli principle one
can write:

1
βN

∑
eq

χch(q̃) = n+ 2〈n↑n↓〉 − n2

=
1
βN

∑
eq

χ0(q̃)
1 + 1

2Uchχ0(q̃)
, (62)

1
βN

∑
eq

χsp(q̃) = n− 2〈n↑n↓〉

=
1
βN

∑
eq

χ0(q̃)
1− 1

2Uspχ0(q̃)
, (63)

where β ≡ 1/T , n = 〈n↑〉 + 〈n↓〉, q̃ = (q, iqn) with
q the wave vectors of an N site lattice, iqn Matsub-
ara frequencies and χ0(q̃) the susceptibility for non-
interacting electrons. The first equalities in each of the
above equations is an exact sum-rule, while the last
equalities define the TPSC approximation for χch(q̃)
and for χsp(q̃). In this approach, the value of 〈n↑n↓〉
may be obtained self-consistently [34] by adding to the

above set of equations the relation Usp = g↑↓(0)U with
g↑↓(0) ≡ 〈n↑n↓〉/〈n↓〉〈n↑〉. As shown in reference [34],
the above procedure reproduces both the Kanamori-
Brueckner screening described in the previous section as
well as the effect of Mermin-Wagner thermal fluctua-
tions, giving a phase transition only at zero-temperature
in two dimensions. In two dimensions, there is however
a crossover temperature TX below which the magnetic
correlation length ξ can grow exponentially. Quantitative
agreement with Monte Carlo simulations is obtained [34]
for all fillings and temperatures in the weak to intermedi-
ate coupling regime U < 8t. The equation (62) for charge
is not necessary to obtain the spin structure factor.

In one dimension, the absence of phase transition in
this theory at finite temperature can be proven as fol-
lows. Near the temperature at which the phase tran-
sition would occur in RPA, δU ≡ Umf,c − Usp ≈ 0,
(Umf,c ≡ 2/χ0 (2kF, 0)) the q = 2kF susceptibility at
zero Matsubara frequency is becoming very large so that
the self-consistency relation equation (63) can be approx-
imated by

2T
∫

dq
2π

2
Uspξ2

0(ξ−2 + q2)
= n− 2〈n↑n↓〉 − C, (64)

where

ξ2
0 ≡

−1
2χ0 (q)

∂2χ0 (q, 0)
∂2q

∣∣∣∣
q=2kF

(65)

ξ ≡ ξ0(Usp/δU)1/2, (66)

and where the integral is for q around 2kF or −2kF and C
contains contributions from non-zero Matsubara frequen-
cies and from corrections to the Lorentzian approximation
used for the iqn = 0 contribution. Then,

4T
Uspξ2

0

∫
dq
2π

1
ξ−2 + q2

≈ 4T
Uspξ2

0

ξ = n−2〈n↑n↓〉+C. (67)

Since the right-hand side is a finite number, ξ behaves as
Uspξ

2
0/ (4T ), becoming infinite at zero temperature only.

There is however nothing to prevent a zero-temperature
phase transition in the theory, so that it cannot describe
accurately the one-dimensional systems at very low tem-
perature.

Comparisons with the Monte Carlo simulations reveal
discrepancies of order 25% for the case U = 4. This means
that contrary to the two-dimensional case, this approach
does not even reproduce well the Kanamori-Brueckner re-
sult described in the previous section. If we had taken
〈n↑n↓〉 from Monte Carlo data in the sum rule equa-
tion (63) instead of computing it self-consistently from
the ansatz Usp = U〈n↑n↓〉/〈n↓〉〈n↑〉 the results would
have been much better. In other words, the calculation of
〈n↑n↓〉 self-consistently is an assumption that fails in one
dimension even more drastically than the RPA functional
form with an effective Usp. The whole approach fails com-
pletely at low temperature. Indeed Umf,c ≡ 2/χ0 (2kF, 0)
vanishes as T → 0 while δU ≡ Umf,c − Usp has to remain
positive according to the above arguments. This in turn
implies that Usp tends to zero at zero temperature which
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means that the uniform magnetic susceptibility would not
be enhanced at zero-temperature with this theory, con-
trary to both exact and renormalization group results.
One could have hoped to use this approach to evaluate
non-logarithmic contributions at high temperature and in-
ject them in the RG expression, but in fact the logarith-
mic temperature dependence of the susceptibilities starts
at rather high temperature.

5.4 General reason for the failure
of higher-dimensional approaches

All of the above approaches fail for several reasons. They
do not take into account the destructive interference be-
tween Cooper and Peierls channels and they try to de-
scribe the whole q dependence of the susceptibility with
a single wave-vector-independent effective interaction Usp

or Urn. This is very different from the scaling theory which
clearly shows that the effective interaction near q = 0 is
different from that near q = 2kF.

The fact that the magnetic susceptibility in one-
dimension cannot be described with a single wave
vector independent effective interaction Usp or Urn is
illustrated in Figure 4a. The simulations are taken from
reference [32]. The solid lines are for an RPA-like form

χ0(q, 0)
1− 1

2Uχ0(q, 0)
(68)

and the data is normalized by χ0(q, 0) as in reference [32].
While the bare value for the simulation is U = 2, one
needs a renormalized value U = 1.3 to fit the components
near q = 0, while to fit near q = 2kF one needs U = 1.7.
Note also that the simulations are done for the canonical
ensemble so that the q = 0 component is strictly zero and
is not shown.

The magnetic structure factor contains not only the
above susceptibility, but also all the non-zero Matsubara
frequency components of the susceptibility. That is why
it is less sensitive to the ±2kF effects of one dimension.
As illustrated in Figure 4b, the Monte Carlo data of ref-
erence [32] for U = 2 can this time be fitted, misleadingly,
with a single renormalized U = 1.5.

5.5 Modified-Kanamori approach in one dimension

In the renormalization group description of magnetic fluc-
tuations, it is clear that the effective interactions near
q = 0 and near q = 2kF are different. No finite or zero-
temperature phase transition occurs even though the uni-
form magnetic susceptibility is enhanced. However, this
approach takes into account only logarithmic terms and
applies only in the vicinity of either q = 0 or q = 2kF. It
does not allow one to draw the full q-dependent suscepti-
bility appearing in Figure 4 for example. Furthermore, we
have seen that the renormalization group result for q = 0
becomes inaccurate compared with Monte Carlo simula-
tions at high temperature. This can be understood as fol-
lows. In addition to the fact that we have employed an
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Fig. 4. a) Magnetic susceptibility χ (q) as a function of wave
vector, normalized to its non-interacting q = 0 value. The
Monte Carlo data is from reference [32]. The solid lines il-
lustrate that when the whole q dependence is considered, RPA
fits are inadequate, even with renormalized values of the inter-
action. b) Magnetic structure factor equation (8) as a function
of wave vector, S (q) . The Monte Carlo data is from refer-
ence [32]. The solid line illustrates that this time, as opposed
to part (a), a simple RPA fit with a renormalized value of U
may work misleadingly well.

approximate sharp cut-off procedure, we do not know the
exact value of g4 and of g1 entering the recursion relations.
But more importantly, logarithmic terms are less singular
at high temperature so that non-logarithmic terms also
become important. To estimate non-logarithmic contribu-
tions, we proceed as follows.
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In the same spirit as the Kanamori approach in higher
dimensions, we want to find an effective interaction that
contains the effect of other channels. This time however,
the effective interaction should be valid only for q ∼ 0.
The RG result suggests that it is the contribution from
the particle-hole channel that is important. Indeed, g1 en-
tering the expressions (48, 50) for the susceptibility con-
tains the set of all diagrams generated by summing 2kF

electron-hole bubbles [11]. This can be seen from Figure 2
and from the recursion relation equation (4.1). In Figure 2,
all cross terms involving g1g2 cancel each other in the cut-
off theory so that only the g2

1 contribution represented by
the bubble is left. This shows that in the RG approach
only 2kF electron-hole contributions are important. In the
computation of the magnetic susceptibility however, one
can observe that internal summations over all momentum
transfers are present (including q = 0 where electron-hole
bubbles are also the only type of diagrams that contribute
in the calculation of χ for H4

p [18,27]). In order to include
these non-logarithmic effects in the calculation of the sus-
ceptibility we average the resummed series of electron-hole
bubbles over the entire Brillouin zone. More specifically,
we take

Um =
〈

U

1 + Uχeh (q, iqn = 0)

〉
q

, (69)

with

χeh (q, iqn = 0) = −N−1
∑
k

f [ε (k − q)]− f [ε (k)]
ε (k − q)− ε (k)

·

Here the full effect of the lattice is restored by taking
ε (k) = −2t cosk with the summation over k that covers
the entire Brillouin zone [−π, π]. It is clear from this pro-
cedure that for |q| ≈ 0, the average will contribute to a g4

type of process while for | q |≈ 2kF the contribution will be
to a g1 type of process, as suggested by equation (50). One
can also check that the Cooper and Peierls-type of bub-
ble diagram, such as those appearing in g1g2 processes in
Figure 2, do cancel at half-filling when averaged over the
Brillouin zone. At this filling, there is perfect particle-hole
symmetry, even with a 2t cosk dispersion relation. Even
if this cancellation is no longer strictly valid away from
half-filling, we write

χ(T ) =
χ0(q, 0)

1− 1
2Umχ0(q, 0)

(70)

for the total susceptibility with Um computed from equa-
tion (69).

The results for the susceptibility are compared with
the Monte Carlo results in Figure 5. The agreement is
within the statistical uncertainty except near T = 0.33.
As in the Kanamori approach, for the range of tempera-
tures illustrated in Figure 5 we can approximate Um by a
temperature-independent value given by

Um =
U

1 + Uλm
(71)

with λm = 〈Λm (q, iqn = 0)〉q . This last approximation
gives, within about 2% in the worse case, the same value
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Fig. 5. Numerical results for the temperature dependent sus-
ceptibility, as already illustrated in Figure 1, compared with
the Modified-Kanamori approach defined by an RPA from with
a renormalized value of the interaction Um given as a function
of the bare value U by equations (69) or (71).

for the susceptibility as that obtained from equation (69).
Using the low temperature value, λm ' 0.25, over the full
temperature range improves the agreement near T = 0.33.
At T = 0 the above modified-Kanamori approach overes-
timates the exact result by 13% at U = 2 and by as much
as 17% for U = 4 showing clearly that a Fermi-liquid like
extrapolation of the finite-temperature data does not yield
the correct zero-temperature limit, as should be clear from
Figure 5. Independently of the RG then, it seems certain
that a change in curvature is needed to extrapolate to the
correct zero-temperature limit. The RG result [32] with
g4 = U on the other hand does have a change in curva-
ture below T = 0.1 and extrapolates to the exact T = 0
result [22] to within 1% for U = 2 and makes physical
sense even if 15% deviations occur in the extrapolation
around U = 4.

Within the approach we just discussed, we can now
come back to the question of the location of the max-
imum in the spin susceptibility. The Monte Carlo data
suggests that the location of the maximum is essentially
independent of interaction, a result that is an obvious con-
sequence of the analytical form of the susceptibility that
we used when Urn has a temperature dependence that
can be neglected. We find that Tmax = 0.178 is deter-
mined purely by the band structure and at quarter filling
is even the same at the 1% level for a cosine or a parabolic
band. Nevertheless, we do not have a simple analytical ex-
pression for the position of the maximum. Indeed, a Som-
merfeld expansion of χ0 up to order T 6 predicts that χ0

always increases with temperature. It is the competition
of this increase with the eventual Curie-Weiss decrease
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of the susceptibility at high temperature that produces
the maximum. The Curie-Weiss decrease is beyond the
radius of convergence of the Sommerfeld expansion.

To extract the strength of interactions from a mea-
surement of χ (T ) one would need to know the bare value
of χ0 (T ) . When χ0 (T ) is unknown, one measure of the
strength of interactions that suggests itself, given the po-
sition of the maximum Tmax and of the high-temperature
inflection point Ti is R = (χ (Tmax)− χ (Ti)) /χ (Tmax) .
In percentage, one finds, for U = 2 and U = 4, respec-
tively, R = 4.2% and 5.2%. Unfortunately it turns out
that this result is too sensitive to the band structure to
really be useful in practice since for a parabolic band the
above cosine band results are replaced by R = 3.7% and
4.5%.

6 Discussion and conclusion

We have shown in this paper that the temperature-
dependent magnetic spin susceptibility of the Hubbard
model at quarter-filling has the following general features
in the weak to intermediate coupling regime (0 < U < 4t).
As temperature is decreased, one encounters a maximum
in the susceptibility at Tmax ∼ 0.18t that arises from the
competition between the Curie-Weiss high-temperature
decrease and the low temperature increase caused by the
proximity to the characteristic van Hove singularity of
one-dimensional systems with a parabolic band bottom.
Decreasing the temperature, there is then an inflection
point at Ti ∼ 0.1t. The position of the maximum and of
the inflection point are essentially independent of interac-
tion strength, as confirmed by Monte Carlo simulations.
Although a rough measure of the strength of the interac-
tions may be obtained by comparing the relative size of the
susceptibility at the maximum and at the inflection point
this is not very reliable since one needs high accuracy as
well as rather detailed information on the band structure:
Indeed, a ratio (χ (Tmax)− χ (Ti)) /χ (Tmax) of order 4%
may correspond to either U ∼ 4t or U ∼ 2t depending on
whether the band structure is parabolic or cosinusoidal.
As shown in Figure 5, the magnetic susceptibility curve
obtained from Monte Carlo simulations between T ∼ 0.1t
and T ∼ 0.33tmay be reproduced very simply by an RPA-
like form with an effective interaction Um for the q = 0
component of the susceptibility. For the case considered
here, one finds Um = U/ (1 + Uλm) with λm ∼ 0.25. That
effective interaction may be computed from the bare one
using the subset of diagrams that naturally appears in
the RG calculation. This effective interaction allows one
to take into account non-logarithmic corrections that are
beyond the RG approach. The effective interaction is valid
only near q = 0. Approaches to the interacting problem
that work in dimensions larger than d = 1 fail essentially
because they keep an RPA form for all values of q, an ap-
proximation that is incorrect in one-dimension because of
the destructive interference that occurs between q = 2kF

Peierls and q = 0 Cooper channels.

At T = 0, the logarithmic terms in the leading
marginally irrelevant operator of the RG lead to an infi-
nite slope ∂χ/∂T. This Luttinger-liquid result is strikingly
different from the Fermi liquid prediction ∂χ/∂T = 0 at
T = 0. Figure 5 clearly shows that a Fermi-liquid ex-
trapolation of the finite-temperature data to the T = 0
exact result is inappropriate. The RG approach that we
used also allows to show that in the presence of band
structure effects (parabolic band bottom) the appearance
of the Luttinger-liquid regime at low temperature is sig-
naled by a low-temperature inflection point located at
TL = (0.031 ± .002)t for t ≤ U ≤ 4t and Λ = 2t. Al-
though the near independence of TL on the precise value
of the interactions for sufficiently large bare U does not
have a simple origin, as discussed in Section 5.1, it comes
in large part from the fact that in this case TL occurs
in a regime where the marginally irrelevant interaction
takes its asymptotic form πvσ/ ln (Λ/T ) . This form de-
pends on interactions only weakly through vσ. The loca-
tion of TL is also not so sensitive to the (unkown) value
of the cut-off since for Λ = t one finds that TL is larger
than the corresponding values for Λ = 2t by at most 6%
over the whole range 0.5t ≤ U ≤ 4t. For Λ = 2t, TL
can also be larger by at most 8% for a parabolic band
compared with a cosine band. The above Luttinger-liquid
regime

(
where ∂2χ/∂T 2 < 0

)
occurs at a temperature

lower than what has been achieved by numerical calcu-
lations up to now. It is quite a challenge to verify them. It
is also important to realize that even though the logarith-
mic Luttinger-liquid limit shows up in the spin suscepti-
bility at quite low temperature, logarithmic contributions
do appear at higher temperature in other quantities such
as the longitudinal spin relaxation time T1.

Although our results are for the quarter-filled model,
it is clear that all the qualitative features should hold for
fillings that are not too close to half-filling. A good quan-
titative estimate for the location of the characteristic fea-
tures of the temperature-dependent spin susceptibility can
easily be obtained for any other filling using the simple
analytical expressions that we have found in Sections 4.2
and 5.5. Our analytical expressions may also be used to
compute the charge susceptibility (compressibility), which
as we saw has no singularity in the T → 0 limit, as long
as umklapp scattering can be neglected [38]. One could
also use our approach to make quantitative predictions
for more general models than the Hubbard model. Com-
parisons with experiment should help to establish appro-
priate bare microscopic parameters for the Hamiltonians
of one-dimensional organic conductors.
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